Merced Montesinos
Professor of Physics

Member (highest level) of the National System of Researches of CONACyT and of the Mexican Academy of Sciences

Ph.D., Cinvestav, 1997
Research Specialty: BF gravity, tetrad gravity, quantum gravity, gauge systems, mathematical physics.

  ORCID iD iconorcid.org/0000-0002-4936-9170

I am primarily interested in the Lagrangian and Hamiltonian foundations of general relativity. The research topics involve-but are not limited to-the study of reformulations of general relativity as a constrained BF theory (Plebanski action), first-order general relativity (tetrad gravity), the problem of time in general relativity, loop quantum gravity, etc.


Publications 2020-2029

  • M. Montesinos and D. Gonzalez, Generalizations of the Nieh-Yan topological invariant, Phys. Rev. D 104, 084020 (2021)
    DOI: 10.1103/PhysRevD.104.084020
  • J. Romero, M. Montesinos, and M. Celada, Hamiltonian analysis of fermions coupled to the Holst action, Phys. Rev. D 103, 124030 (2021)
    DOI: 10.1103/PhysRevD.103.124030
  • M. Montesinos, R. Escobedo, and M. Celada, Straightforward Hamiltonian analysis of BF gravity in n dimensions, Gen. Relativ. Grav. 53, 52 (2021)
    DOI: 10.1007/s10714-021-02821-3
  • M. Montesinos, D. Gonzalez, R. Romero, and M. Celada, Off-shell Noether currents and potentials for first-order general relativity, Symmetry 13, 348 (2021)
    DOI: 10.3390/sym13020348
  • M. Montesinos and M. Celada, Canonical analysis with no second-class constraints of BF gravity with Immirzi parameter, Phys. Rev. D 101, 084043 (2020)
    DOI: 10.1103/PhysRevD.101.084043
  • M. Montesinos, J. Romero, and M. Celada, Canonical analysis of Holst action without second-class constraints, Phys. Rev. D 101, 084003 (2020)
    DOI: 10.1103/PhysRevD.101.084003
  • M. Montesinos, R. Escobedo, J. Romero, and M. Celada, Canonical analysis of n-dimensional Palatini action without second-class constraints, Phys. Rev. D 101, 024042 (2020)
    DOI: 10.1103/PhysRevD.101.024042
  • M. Montesinos, R. Romero, and D. Gonzalez, The gauge symmetries of f(R) gravity with torsion in the Cartan formalism, Class. Quantum Grav. 37, 045008 (2020)
    DOI: 10.1088/1361-6382/ab6272
  • Publications 2010-2019

  • M. Montesinos, J. Romero, and M. Celada, Revisiting the solution of the second-class constraints of the Holst action, Phys. Rev. D 99, 064029 (2019)
    DOI: 10.1103/PhysRevD.99.064029
  • M. Montesinos, J. Romero, R. Escobedo, and M. Celada, SU(1,1) Barbero-like variables derived from Holst action, Phys. Rev. D 98, 124002 (2018)
    DOI: 10.1103/PhysRevD.98.124002
  • M. Montesinos, R. Romero, and B. Díaz, Symmetries of first-order Lovelock gravity, Class. Quantum Grav. 35, 235015 (2018)
    DOI: 10.1088/1361-6382/aaea21
  • M. Montesinos, D. Gonzalez, and M. Celada, The gauge symmetries of first-order general relativity with matter fields, Class. Quantum Grav. 35, 205005 (2018)
    DOI: 10.1088/1361-6382/aae10d
    See also the Insight Paper on CQG+ !!!
  • D. Gonzalez, M. Celada, and M. Montesinos, Polynomial BF-type action for general relativity and anti-self-dual gravity, Phys. Rev. D 97, 124055 (2018)
    DOI: 10.1103/PhysRevD.97.124055
  • B. Díaz and M. Montesinos, Geometric Lagrangian approach to the physical degree of freedom count in field theory, J. Math. Phys. 59, 052901 (2018)
    DOI: 10.1063/1.5008740
  • M. Montesinos, J. Romero, and M. Celada, Manifestly Lorentz-covariant variables for the phase space of general relativity, Phys. Rev. D 97, 024014 (2018)
    DOI: 10.1103/PhysRevD.97.024014
  • M. Montesinos, D. González, M. Celada, and B. Díaz, Reformulation of the symmetries of first-order general relativity, Class. Quantum Grav. 34, 205002 (2017)
    DOI: 10.1088/1361-6382/aa89f3
  • (Topical Review) M. Celada, D. González, and M. Montesinos, BF gravity, Class. Quantum Grav. 33, 213001 (2016)
    DOI: 10.1088/0264-9381/33/21/213001
  • M. Celada, D. González, and M. Montesinos, Plebanski-like action for general relativity and anti-self-dual gravity, Phys. Rev. D 93, 104058 (2016)
    DOI: 10.1103/PhysRevD.93.104058
  • M. Celada, M. Montesinos, and J. Romero, Barbero's formulation from a BF-type action with the Immirzi parameter, Class. Quantum Grav. 33, 115014 (2016)
    DOI: 10.1088/0264-9381/33/11/115014
  • M. Celada, D. González, and M. Montesinos, Alternative derivation of Krasnov's action for general relativity, Phys. Rev. D 92, 044059 (2015)
    DOI: 10.1103/PhysRevD.92.044059
  • D. González and M. Montesinos, Gauge connection formulations for general relativity, Phys. Rev. D 91, 024021 (2015)
    DOI: 10.1103/PhysRevD.91.024021
  • M. Á. García-Ariza, M. Montesinos, and G.F. Torres del Castillo, Geometric thermodynamics: black holes and the meaning of the scalar curvature, Entropy 16, 6515 (2014)
    DOI: 10.3390/e16126515
  • B. Díaz, D. Higuita, and M. Montesinos, Lagrangian approach to the physical degree of freedom count, J. Math. Phys. 55, 122901 (2014)
    DOI: 10.1063/1.4903183
  • M. Celada and M. Montesinos, Lorentz-covariant Hamiltonian analysis of BF gravity with the Immirzi parameter, Class. Quantum Grav. 29, 205010 (2012)
    DOI: 10.1088/0264-9381/29/20/205010
  • M. Montesinos and M. Velázquez, BF gravity with Immirzi parameter and matter fields, Phys. Rev. D 85, 064011 (2012)
    DOI: 10.1103/PhysRevD.85.064011
  • M. Montesinos and M. Velázquez, Equivalent and alternative forms for BF gravity with Immirzi parameter, Symmetry, Integrability, and Geometry: Methods and Applications (SIGMA) 7, 103 (2011)
    DOI: 10.3842/SIGMA.2011.103
  • A. Gallardo and M. Montesinos, The boundary field theory induced by the Chern-Simons theory, J. Phys. A: Math. Theor. 44, 135402 (2011)
    DOI: 10.1088/1751-8113/44/13/135402
  • R. Capovilla, M. Montesinos, and M. Velázquez, Minimally modified self-dual 2-forms gravity, Class. Quantum Grav. 27, 145011 (2010)
    DOI: 10.1088/0264-9381/27/14/145011
  • L. Liu, M. Montesinos, and A. Perez, Topological limit of gravity admitting an SU(2) connection formulation, Phys. Rev. D 81, 064033 (2010)
    DOI: 10.1103/PhysRevD.81.064033
  • M. Montesinos and M. Velázquez, BF gravity with Immirzi parameter and cosmological constant, Phys. Rev. D 81, 044033 (2010)
    DOI: 10.1103/PhysRevD.81.044033
  • Publications 2000-2009

  • V. Cuesta, M. Montesinos, M. Velázquez, and J.D. Vergara, Topological field theories in n-dimensional spacetimes and Cartan's equations, Phys. Rev. D 78, 064046 (2008)
    DOI: 10.1103/PhysRevD.78.064046
  • M. Montesinos and A. Perez, Two-dimensional topological field theories coupled to four-dimensional BF theory, Phys. Rev. D 77, 104020 (2008)
    DOI: 10.1103/PhysRevD.77.104020
  • A. Pérez-Lorenzana, M. Montesinos, and T. Matos, Unification of cosmological scalar fields, Phys. Rev. D 77, 063507 (2008)
    DOI: 10.1103/PhysRevD.77.063507
  • V. Cuesta and M. Montesinos, Cartan's equations define a topological field theory of the BF type, Phys. Rev. D 76, 104004 (2007)
    DOI: 10.1103/PhysRevD.76.104004
  • V. Cuesta, M. Montesinos, and J.D. Vergara, Gauge invariance of the action principle for gauge systems with noncanonical symplectic structures, Phys. Rev. D 76, 025025 (2007)
    DOI: 10.1103/PhysRevD.76.025025
  • M. Montesinos and G.F. Torres del Castillo, Reply to Comment on Symplectic quantization, inequivalent quantum theories, and Heisenberg's principle of uncertainty, Phys. Rev. A 75, 066102 (2007)
    DOI: 10.1103/PhysRevA.75.066102
  • M. Montesinos and E. Flores, Symmetric energy-momentum tensor in Maxwell, Yang-Mills, and Proca theories obtained using only Noether's theorem, Rev. Mex. Fís. 52, 29 (2006)
    download PDF
  • M. Montesinos, Alternative symplectic structures for SO(3,1) and SO(4) four-dimensional BF theories, Class. Quantum Grav. 23, 2267 (2006)
    DOI: 10.1088/0264-9381/23/7/004
  • M. Mondragón and M. Montesinos, Covariant canonical formalism for four-dimensional BF theory, J. Math. Phys. 47, 022301 (2006)
    DOI: 10.1063/1.2161805
  • A. A. Martínez-Merino and M. Montesinos, Hamilton-Jacobi theory for Hamiltonian systems with non-canonical symplectic structures, Annals of Physics (NY) 321, 318 (2006)
    DOI: 10.1016/j.aop.2005.08.008
  • M. Montesinos and G.F. Torres del Castillo, Symplectic quantization, inequivalent quantum theories, and Heisenberg's principle of uncertainty, Phys. Rev. A 70, 032104 (2004)
    DOI: 10.1103/PhysRevA.70.032104
  • M. Mondragón and M. Montesinos, Covariant description of parametrized nonrelativistic Hamiltonian systems, Int. J. Mod. Phys. A 19, 2473 (2004)
    DOI: 10.1142/S0217751X04018063
  • M. Montesinos, Noether currents for BF gravity, Class. Quantum Grav. 20, 3569 (2003)
    DOI: 10.1088/0264-9381/20/16/303
  • M. Montesinos, Heisenberg's quantization of dissipative systems, Phys. Rev. A 68, 014101 (2003)
    DOI: 10.1103/PhysRevA.68.014101
  • M. Montesinos and J.D. Vergara, Linear constraints from generally covariant systems with quadratic constraints, Phys. Rev. D 65, 064002 (2002)
    DOI: 10.1103/PhysRevD.65.064002
  • M. Montesinos and J.D. Vergara, Gauge invariance of complex general relativity, Gen. Relativ. Grav. 33, 921 (2001)
    DOI: 10.1023/A:1010268110661
  • M. Montesinos, Self-dual gravity with topological terms, Class. Quantum Grav. 18, 1847 (2001)
    DOI: 10.1088/0264-9381/18/10/303
  • R. Capovilla, M. Montesinos, V.A. Prieto, and E. Rojas, BF gravity and the Immirzi parameter, Class. Quantum Grav. 18, L49 (2001)
    DOI: 10.1088/0264-9381/18/5/101
  • M. Montesinos and C. Rovelli, Statistical mechanics of generally covariant quantum theories: a Bolztmann-like approach, Class. Quantum Grav. 18, 555 (2001)
    DOI: 10.1088/0264-9381/18/3/314
  • M. Montesinos, Relational evolution of the degrees of freedom of generally covariant quantum theories, Gen. Relativ. Grav. 33, 1 (2001)
    DOI: 10.1023/A:1002067601136
  • Publications 1993-1999

  • M. Montesinos and A. Pérez-Lorenzana, Exact solutions of n-level systems and gauge theories, Phys. Rev. A 60, 2554 (1999)
    DOI: 10.1103/PhysRevA.60.2554
  • M. Montesinos and A. Pérez-Lorenzana, Minimal coupling and Feynman's proof, Int. J. Theor. Phys. 38, 901 (1999)
    DOI: 10.1023/A:1026665220713
  • M. Montesinos, C. Rovelli, and T. Thiemann, SL(2,R) model with two Hamiltonian constraints, Phys. Rev. D 60, 044009 (1999)
    DOI: 10.1103/PhysRevD.60.044009
  • M. Montesinos and C. Rovelli, The fermionic contribution to the spectrum of the area operator in nonperturbative quantum gravity, Class. Quantum Grav. 15, 3795 (1998)
    DOI: 10.1088/0264-9381/18/3/314
  • G. F. Torres del Castillo and M. Montesinos-Velásquez, Riemannian structure of the thermodynamic phase space, Rev. Mex. Fís. 39, 194 (1993)
    download PDF

  • Supervised Ph.D. Theses:

    1. Ricardo Escobedo Alcaraz, Variables canónicas para la relatividad general de primer orden, Ph.D., Cinvestav, 2021
    2. Rodrigo Humberto Romero Aguilar, Simetrías de norma en teorías de gravedad, Ph.D., Cinvestav, 2020
    3. Jorge Luis Romero Guerra, Hamiltonian first-order gravity in terms of manifestly Lorentz-covariant phase-space variables, Ph.D., Cinvestav, 2020
    4. Miguel Ángel García Ariza, Estructura geométrica de la termodinámica en equilibrio, Ph.D., Benemérita Universidad Autónoma de Puebla (BUAP), 2018
    5. Bogar Díaz Jiménez, Geometric approach to Lagrangian systems, Ph.D., Benemérita Universidad Autónoma de Puebla (BUAP), 2017
    6. Mariano Alexander Celada Martínez, Hamiltonian BF gravity, Ph.D., Cinvestav, 2016
      2017 Arturo Rosenblueth Award for the best Ph.D. Thesis in Exact and Natural Sciences
    7. Diego Giovanni González Vallejo, Geometrical aspects of 2-forms gravity, Ph.D., Cinvestav, 2015
    8. Mercedes Paulina Velázquez Quesada, BF gravity, matter couplings, and related theories, Ph.D., Cinvestav, 2011
      2012 Weizmann Award for the best Ph.D. Thesis in Exact Sciences
    9. Arturo Alejandro Gallardo Lozada, Dinámicas de bulto y de frontera, Ph.D., Cinvestav, 2011
    10. Vladimir Cuesta Sánchez, Algunas aplicaciones de la geometría simpléctica en la física matemática, Ph.D., Cinvestav, 2007

    Supervised M.Sc. Theses:

    1. Ricardo Escobedo Alcaraz, Fusión de las constricciones hamiltoniana y de difeomorfismos de la acción de Palatini, M.Sc., Cinvestav, 2018
    2. Vicente Vargas García, Gravedad tipo BF en dos dimensiones, M.Sc., Cinvestav, 2014
    3. Jorge Humberto Felipe Matías, Gravedad en tres dimensiones en términos de conexiones, M.Sc., Cinvestav, 2014
    4. Alberto Efraín Morales Avelino, Gravedad degenerada en tres dimensiones, M.Sc., Cinvestav, 2014
    5. Jorge Luis Romero Guerra, Gravedad tipo BF canónica, M.Sc., Cinvestav, 2014
    6. Daniel Fernando Higuita Borja, Lagrangian approach to the physical degree of freedom count, M.Sc., Cinvestav, 2012
    7. Diego Giovanni González Vallejo, Gravedad de 2-formas, M.Sc., Cinvestav, 2011
    8. Mariano Alexander Celada Martínez, Análisis hamiltoniano de gravedad a la BF, M.Sc., Cinvestav, 2011
    9. Ricardo Magaña Villalba, Análisis hamiltoniano del término agregado por Holst a la lagrangiana de Palatini, M.Sc., Cinvestav, 2007
    10. Arturo Alejandro Gallardo Lozada, Condiciones de frontera en el formalismo hamiltoniano à la Dirac, M.Sc., Cinvestav, 2006
    11. Aldo Aparicio Martínez Merino, Teoría de Hamilton-Jacobi para sistemas hamiltonianos genuinamente covariantes, M.Sc., Cinvestav, 2005
    12. Vladimir Cuesta Sánchez, Conexiones planas en relatividad general, M.Sc., Cinvestav, 2004
    13. Mauricio Javier Mondragón López, Formalismo canónico covariante de teorías BF en cuatro dimensiones y sistemas parametrizados con un número finito de grados de libertad, M.Sc., Cinvestav, 2003

    Supervised B.Sc. Theses:

    1. Alberto Efraín Morales Avelino, Dinámica de la partícula libre relativista, B.Sc., Universidad Autónoma Benito Juárez de Oaxaca (UABJO), 2014
    2. Benito Alberto Juárez Aubry, Scalar field coupling to BF gravity, B.Sc., Universidad de las Américas Puebla (UDLAP), 2011
    3. Ernesto Flores González, Tensor de energía-momentum simétrico sin usar el método de simetrización de Belinfante, B.Sc., Universidad Veracruzana, 2006
    Go to the Physics Department of Cinvestav